Tractable Robust Expected Utility and Risk Models for Portfolio Optimization

نویسندگان

  • Karthik Natarajan
  • Melvyn Sim
  • Joline Uichanco
چکیده

Expected utility models in portfolio optimization is based on the assumption of complete knowledge of the distribution of random returns. In this paper, we relax this assumption to the knowledge of only the mean, covariance and support information. No additional assumption on the type of distribution such as normality is made. The investor’s utility is modeled as a piecewise-linear concave function. We derive exact and approximate optimal trading strategies for a robust or maximin expected utility model, where the investor maximizes his worst case expected utility over a set of ambiguous distributions. The optimal portfolios are identified using a tractable conic programming approach. Using the optimized certainty equivalent (OCE) framework of Ben-Tal and Teboulle [6], we provide connections of our results with robust or ambiguous convex risk measures, in which the investor minimizes his worst case risk under distributional ambiguity. New closed form expressions for the OCE risk measures and optimal portfolios are provided for two and three piece utility functions. Computational experiments indicate that such robust approaches can provide good trading strategies in financial markets.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Robust Portfolio Optimization with risk measure CVAR under MGH distribution in DEA models

Financial returns exhibit stylized facts such as leptokurtosis, skewness and heavy-tailness. Regarding this behavior, in this paper, we apply multivariate generalized hyperbolic (mGH) distribution for portfolio modeling and performance evaluation, using conditional value at risk (CVaR) as a risk measure and allocating best weights for portfolio selection. Moreover, a robust portfolio optimizati...

متن کامل

Robust portfolio selection with polyhedral ambiguous inputs

 Ambiguity in the inputs of the models is typical especially in portfolio selection problem where the true distribution of random variables is usually unknown. Here we use robust optimization approach to address the ambiguity in conditional-value-at-risk minimization model. We obtain explicit models of the robust conditional-value-at-risk minimization for polyhedral and correlated polyhedral am...

متن کامل

Robust portfolio selection based on a multi-stage scenario tree

The aim of this paper is to apply the concept of robust optimization introduced by Bel-Tal and Nemirovski to the portfolio selection problems based on multi-stage scenario trees. The objective of our portfolio selection is to maximize an expected utility function value (or equivalently, to minimize an expected disutility function value) as in a classical stochastic programming problem, except t...

متن کامل

Robustness-based portfolio optimization under epistemic uncertainty

In this paper, we propose formulations and algorithms for robust portfolio optimization under both aleatory uncertainty (i.e., natural variability) and epistemic uncertainty (i.e., imprecise probabilistic information) arising from interval data. Epistemic uncertainty is represented using two approaches: (1) moment bounding approach and (2) likelihood-based approach. This paper first proposes a ...

متن کامل

Relative performance measures of portfolio robustness

In this paper, we propose and analyze an alternative measure of “robust performance”. This alternative measure differs from the typical “worst case expected utility” and “worst case meanvariance” formulations in that a (dynamic) portfolio is evaluated not only on the basis of its performance when there is an adversarial opponent (“nature”), but also by its performance relative to a fully inform...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008